Skip to main content
Student homeWPI News home
Story
2 of 10

WPI Develops Innovative Robotic System to Enhance Kidney Transplant Screening

Worcester Polytechnic Institute researchers believe a new robotic technology they’re developing can help save lives by improving the process of matching kidney donors with people awaiting a transplant. Their approach seeks to advance medical evaluations that determine whether a donated kidney is viable to be transplanted.  According to the National Kidney Foundation, 90,000 people in the United States are on a kidney waitlist; each day, 12 die before a transplant can happen. While a shortage of donors is one reason for the long waitlist, another major factor is the number of donated kidneys that get discarded. Assessing a kidney for transplant involves examining the organ after it’s been removed from the donor to ensure the kidney is free of disease or structural anomalies.  Current methods for this assessment include either a biopsy, which involves a review of cells taken from a small sample of the kidney, or optical coherence tomography (OCT), a light-based handheld imaging technology that can provide a high-resolution snapshot of a limited section of the organ. Xihan Ma, robotics engineering PhD student, and Haichong (Kai) Zhang, associate professor of robotics engineering and biomedical engineering The assessment process risks wasting the organ because these exams take time and provide information about only a small portion of the kidney; both factors may hamper clinicians’ ability to accurately assess the organ and approve it for transplant while it is still viable.  Haichong (Kai) Zhang, associate professor of robotics engineering and biomedical engineering, and Xihan Ma, a robotics engineering PhD student, are using innovations in medical robotics to address this problem.  “With our robotic system, we can capture a scan of the whole kidney,” said Zhang. “With current approaches, the area of the kidney that can be assessed is inherently limited by either the size of the biopsy needle or the size of the OCT imaging probe, and thus the assessment of the organ is biased by which small part of the kidney the operator chooses to focus on.” Zhang and Ma have developed a robotic OCT system, which is a fully automated method of imaging an entire donated kidney to help a clinician make an assessment. The system was developed at WPI’s Medical FUSION (Frontier Ultrasound Imaging and Robotic Instrumentation) Lab. “Our motivation is to think about how we can streamline the process used to evaluate the viability of donated kidneys to be more reliable and accurate, and to not waste kidneys that potentially can be used to save lives of patients,” said Zhang. “We are integrating the strengths of medical robots to make imaging of donor kidneys more accessible and less user-dependent and to acquire images over a wider area of the organ, which can provide more concise and direct feedback to clinicians so they can make better clinical decisions.”

LISTEN:

00:00 | 07:30

Photography

Matthew Burgos

Worcester Polytechnic Institute researchers believe a new robotic technology they’re developing can help save lives by improving the process of matching kidney donors with people awaiting a transplant. Their approach seeks to advance medical evaluations that determine whether a donated kidney is viable to be transplanted. 

According to the National Kidney Foundation, 90,000 people in the United States are on a kidney waitlist; each day, 12 die before a transplant can happen.

While a shortage of donors is one reason for the long waitlist, another major factor is the number of donated kidneys that get discarded. Assessing a kidney for transplant involves examining the organ after it’s been removed from the donor to ensure the kidney is free of disease or structural anomalies. 

Current methods for this assessment include either a biopsy, which involves a review of cells taken from a small sample of the kidney, or optical coherence tomography (OCT), a light-based handheld imaging technology that can provide a high-resolution snapshot of a limited section of the organ.

Xihan Ma, robotics engineering PhD student, and Haichong (Kai) Zhang, associate professor of robotics engineering and biomedical engineering

The assessment process risks wasting the organ because these exams take time and provide information about only a small portion of the kidney; both factors may hamper clinicians’ ability to accurately assess the organ and approve it for transplant while it is still viable. 

Haichong (Kai) Zhang, associate professor of robotics engineering and biomedical engineering, and Xihan Ma, a robotics engineering PhD student, are using innovations in medical robotics to address this problem. 

“With our robotic system, we can capture a scan of the whole kidney,” said Zhang. “With current approaches, the area of the kidney that can be assessed is inherently limited by either the size of the biopsy needle or the size of the OCT imaging probe, and thus the assessment of the organ is biased by which small part of the kidney the operator chooses to focus on.”

Zhang and Ma have developed a robotic OCT system, which is a fully automated method of imaging an entire donated kidney to help a clinician make an assessment. The system was developed at WPI’s Medical FUSION (Frontier Ultrasound Imaging and Robotic Instrumentation) Lab.

“Our motivation is to think about how we can streamline the process used to evaluate the viability of donated kidneys to be more reliable and accurate, and to not waste kidneys that potentially can be used to save lives of patients,” said Zhang. “We are integrating the strengths of medical robots to make imaging of donor kidneys more accessible and less user-dependent and to acquire images over a wider area of the organ, which can provide more concise and direct feedback to clinicians so they can make better clinical decisions.”

Latest WPI Latest News