Skip to main content
Employee homeWPI News home
Story
2 of 10

WPI Researchers Send Experiment to Space Aboard Blue Origin Spacecraft

Equipment from the lab of Jamal Yagoobi is prepared for launch aboard a Blue Origin spacecraft. A WPI experiment focused on a new way to prevent electronics from overheating flew into space Sept. 18, 2025, aboard a Blue Origin spacecraft, giving researchers led by Jamal Yagoobi a critical opportunity to advance their technology by testing it in zero-gravity and multi-gravity settings.  The uncrewed suborbital flight lasted just over 10 minutes, including slightly more than three minutes of weightlessness, and carried more than 40 scientific and research payloads. Blue Origin’s New Shepard spacecraft blasted off and landed at a site near El Paso, Texas, while Yagoobi, the George F. Fuller Professor of Mechanical Engineering, watched a live webcast of the flight in his Multi-Scale Heat Transfer (MHT) Laboratory with students who had worked on the WPI experiment.  “Many people, including students and collaborators at NASA, deserve credit for working hard on this project during the years leading up to this mission,” says Yagoobi. “The results of our experiment aboard the flight confirm that our design can significantly reduce the surface temperatures of electronics in zero-gravity and much higher gravity conditions. Because of the excellent results we obtained, we are very close to commercializing our electrohydrodynamic cooling technology, as our project has reached a new level of maturity as designated by NASA’s Technology Readiness Level.”    The project, funded by NASA, sought to address an out-of-this-world challenge that could have implications for future spaceships and satellites. On Earth, liquids boil upon encountering hot objects, and vapor carries away the heat, making boiling a liquid an efficient way to cool heated items. However, in space, where there is no gravity, vapor bubbles cannot rise from a boiling liquid and heat does not dissipate effectively or at all. To enable heat transfer in small spaces to avoid overheating, Yagoobi and his team adopted an electrohydrodynamic approach. 

Equipment from the lab of Jamal Yagoobi is prepared for launch aboard a Blue Origin spacecraft.

A WPI experiment focused on a new way to prevent electronics from overheating flew into space Sept. 18, 2025, aboard a Blue Origin spacecraft, giving researchers led by Jamal Yagoobi a critical opportunity to advance their technology by testing it in zero-gravity and multi-gravity settings. 

The uncrewed suborbital flight lasted just over 10 minutes, including slightly more than three minutes of weightlessness, and carried more than 40 scientific and research payloads. Blue Origin’s New Shepard spacecraft blasted off and landed at a site near El Paso, Texas, while Yagoobi, the George F. Fuller Professor of Mechanical Engineering, watched a live webcast of the flight in his Multi-Scale Heat Transfer (MHT) Laboratory with students who had worked on the WPI experiment. 

“Many people, including students and collaborators at NASA, deserve credit for working hard on this project during the years leading up to this mission,” says Yagoobi. “The results of our experiment aboard the flight confirm that our design can significantly reduce the surface temperatures of electronics in zero-gravity and much higher gravity conditions. Because of the excellent results we obtained, we are very close to commercializing our electrohydrodynamic cooling technology, as our project has reached a new level of maturity as designated by NASA’s Technology Readiness Level.”   

The project, funded by NASA, sought to address an out-of-this-world challenge that could have implications for future spaceships and satellites. On Earth, liquids boil upon encountering hot objects, and vapor carries away the heat, making boiling a liquid an efficient way to cool heated items. However, in space, where there is no gravity, vapor bubbles cannot rise from a boiling liquid and heat does not dissipate effectively or at all. To enable heat transfer in small spaces to avoid overheating, Yagoobi and his team adopted an electrohydrodynamic approach. 

Latest WPI Latest News